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Data Summary 

§  Cassini VIMS data are consistent 
with migrating H2O adsorbed to 
colder parts of lunar surface 
§  H2O  
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Data Summary 

§  Chandrayaan-1 M3 data consistent with H2O adsorbed on 
mid-high latitude regions of lunar surface 
§  Unclear in McCord et al., 2011 if 3 µm band exists at 

low latitude near the terminator in M3 data 
§  Similar to Cassini, show decreased band depth on 

mare. 

McCord et al., JGR, 2011 

show the 2.8 mm OH absorption but none show the 3 mm
absorption, usually evident as a broad turndown in the
spectrum toward 3 mm (Figure 6). All the bright‐crater
spectra show a stronger 2.8 mm absorption than seen in the

mature highlands soils (Figure 6) [Pieters et al., 2009,
Figure S2]. Thus, there is something about the fresh high-
lands crater material that encourages OH formation. Perhaps
this property is the fresher exposed grain microsurfaces

Figure 11. Examples of fresh soil spectra from small fresh craters with various compositions (feld-
spathic, olivine‐rich, and pyroxene‐rich) that show absorption feature mostly at 2.8 mm. All these fresh
soils are in highland regions, but the compositions vary from normal highlands felspathic to more mare‐
like mafic (e.g., note 1 mm region absorptions). (a) These regions differ in brightness, ranging from bright-
est to darkest, top to bottom. (b) However, the spectra have been scaled to have the same reflectance at
2.656 mm, thus normalizing the absorption strengths. No thermal emission has been removed, and no
visual evidence of the presence of thermal radiation is apparent.

Figure 12. Plots of the strength of the (a) 3 mm and (b) 2.8 mm absorption features versus lunar surface
temperature. The surface temperature calculation is described by Clark et al. [2011].
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Data Summary 

§  EPOXI data indicate a change in band depth with incidence angle 
§  Interesting to note that the Moon was likely in the Earth’s 

magnetotail for 2nd observation (on June 9, 2009) 

NASA/EPOXI/UMD 
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Data Summary 

§ See Amanda Hendrix’s talk at 9:45 today 
§  Water absorption edge exists in FUV spectrum at 165 nm 
§  LRO LAMP data are consistent with a latitudinal dependence on 

the band strength of hydration (greater strength at higher latitude) 
§  Within a latitude band, there is a dependence of band strength on 

beta angle (minimum strength at β=0°), especially at low latitude 



Step 1—Solar  Wind Implantation 

§  Solar wind protons are one 
possible source of 
hydrogen for OH/H2O 
§  Protons penetrate ~200 Å 
§  Damages lattice 
§  Hydroxyl formation 
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Solar Wind (SW) Delivery Rate 
§  Available water over a 

lunation 
§  Flux 3e8 p+cm-2s-1 

§  Fluence 1.8e14 p+/cm2 

§  Assume 100% 
conversion to water 

§  Global layer 0.29 Å 
H2O  

§  For 1000 ppm, 160 Å 
§  For 1 µm thickness, 

16 ppm 
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Diurnal Changes—Solar Wind Limits 

§  Changes equivalent to ~100 yrs. worth of solar wind on a 
diurnal basis would be required to produce an 
observable diurnal signal 

§  This rules out direct implantation of solar wind to 
explain the variations in band depth with local time 

§  Photometric effects may still produce a change in 
band depth with local time 

§  Migration may still produce a diurnal change in band 
depth 



Diffusing, implanted solar wind 

SW delivery Diffusion time 
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Steady state concentration, diffusing OH 

§  The balance between 
influx and diffusing, 
implanted solar wind 
protons as a function 
throughout a lunation 

§  High latitude—buildup 
from lunation to 
lunation 

§  Low latitude, diurnal 
signature 
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Steady state concentration, diffusing OH 
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Step 2-Migrating Flux 

§  Monte Carlo model of 
migration pattern of H2O 

§  Each particle takes an 
average of 30 hops—boosts 
flux 

§  Migration redistributes 
particles to higher solar 
zenith angles  

§  Still have the peak flux at the 
equator 
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Step 3-Surface Residence 
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Migrating vs. diffusing concentrations 
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Conclusions—OH  
§  Incident flux competes with diffusion rate to determine 

the steady state concentration of OH in the lunar regolith 
§  Where diffusion is slower than a lunation, a buildup 

can occur and the density is pretty flat diurnally 
§  Where diffusion is faster than a lunation, some buildup 

can occur near the terminator, diurnal changes in 
concentration would occur 

§  Solar wind does not provide sufficient source of H to 
produce observable diurnal variation in OH 
concentration 



Conclusions—H2O 
§  Migrating water vapor would accumulate on the surface 
§  Simulations reproduce latitudinal/diurnal distribution 
§  Dayside residence determined by sublimation 
§  Nightside residence determined by photon stimulated 

desorption 
§  Increase in dayside residence time needed to bring 

model in agreement with observations, both to get 
density high enough and to suppress dawn 
enhancement 



Diffusion Simulations 

§  Varied diffusion parameters 
§  Activation energy 
§  Diffusion coefficient 

§  Cannot reproduce an 
observable diurnal difference 

§  Produces latitudinal 
difference [O

H
]p

ol
e/

[O
H

]m
id

Activation Energy (eV)



Lunar Albedo Swirls 

§  Regions where magnetic anomalies exist demonstrate 
interesting characteristics: 
§  High albedo swirls 
§  Proton reflection (Saito et al., 2008) 
§  ENA void (Wieser et al., 2009) 
§  Low absorption at 2.8 µm (Kramer et al., 2011) 

§  Consistent with reduced maturity caused by magnetic 
fields diverting the incident solar wind flux 



Latitudinal Changes—Solar Wind Limits 

§  Time to reach saturation is longer at high latitude than 
low latitude 

§  Temperature is colder at high latitude 
§  Perhaps a limiting process in the OH 

concentration is temperature-dependent 
§  Diffusion 
§  Adsorption 



Step 1-Solar Wind Implantation 

§  Solar wind protons are one 
possible source of 
hydrogen for OH/H2O 
§  Protons penetrate ~200 Å 
§  Radiation damages lattice 
§  Hydroxyl formation 

§  Saturation levels achieved 
faster than the regolith 
turnover time 

§  Perhaps there are two 
components, a physisorbed 
H2O and a chemisorbed OH. 
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10-1000 ppm OH—Solar Wind Limits 
§  Lab indications are that saturation 

levels achieved for fluence of 1018 
p+/cm2 (Managadze et al., 2011; 
Blanford et al., 1986) 
§  Achieved in ~1000 yr. at equator 

§  Equatorial regolith samples 
(Apollo samples) contain 
implanted solar wind elements 
§  Concentration is surface 

correlated 
§  Saturation level is 50-100 ppm H  

§  composition dependent 
§  If H is in form of OH, this is 

equivalent to 850-1700 ppm 
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